Course Unit Title	Programming	for Business Analytics		
Course Unit Code	GD630/BI420			
Type of Unit	Elective			
Level of Course Unit	Second cycle			
Year of Study	First/second year	ar		
Number of ECTS Credits	6 ECTS			
Class Contact Hours	28			
Course Unit Objectives	This course will introduce the students to the world of programming and teach			
	them the fundamentals underpinning the theory of algorithms, programming			
	and data structures. It includes a fast-paced introduction to the fundamentals			
	of a scripting language (e.g., Python) which is widely used in the area of data			
	science. During the class a lot of emphasis will be given on programming from			
	scratch of well-known machine learning algorithms, for both clustering and			
	classification, as used in data-science.			
	By completion of this course students will be in a position to use the			
	programming language they learned to develop programs in order to perform			
	specific tasks. For example, mine, clean, analyze and visualize datasets and			
	thus solve business-oriented problems efficiently.			
Learning Outcomes		The students completing the course should be able to		
	CILO 1	Understand how to characterize data in terms of quality in		
	CH O 2	the context of data-driven decision making.		
	CILO 2	Learn to program efficiently in a scripting language (e.g.,		
		Python) widely used in data science for both mining and		
	CILO 3	visualization purposes.		
	CILO 3	Understand the basic concepts used in programming and algorithms.		
	CILO 4	Demonstrate an understanding of how to select appropriate		
		data structures and algorithmic procedures for addressing a		
		problem of interest.		
	CILO 5	Understand how to scrape, cleanse and de-dupe data making		
		them suitable for analysis using techniques such as regular		
		expressions.		
	CILO 6	Program from scratch fundamental data-science		
		classification algorithms such as Naive Bayes, Simple Linear		
		Regression, Multiple Regression, Logistic Regression etc.		
	CILO 7	Program of clustering algorithms such as k-Nearest		
		Neighbours.		
Name of Lecturer(s)	Dr Stathis Hadjidemetriou			
Mode of delivery	Face to Face			
Prerequisites or co-requisites	None			

Garage Garatant	1	CILO		
Course Content	1. Introduction to data types and data science; data quality	CILO		
	and analysis problems.	1.4		
	2. Introduction to algorithms and computational	CILO		
	complexity	1,3		
	3. Scripting language fundamentals: modules, arithmetic,	CILO		
	functions, strings, exceptions	2,3		
	4. Data structures: lists, tuples, dictionaries, sets, hashtables	CILO		
		2,3		
	5. Control Flow Statements: for, while, if-else	CILO		
		2,3		
	6. Data Visualization using Python	CILO		
		2,3		
	7. The gradient descent algorithm for data science	CILO		
		6,7		
	8. Machine learning. Problems of over-fitting, under-	CILO		
	fitting, correctness, bias-variance trade-off	1,5		
	9. Python Task 1: k-Nearest neighbors	CILO		
		7		
	10. Python Task 2: Simple and Multiple Regression	CILO		
		6		
Recommended or required				
reading	Required Reading:			
	1. Joel Grus. Data Science from Scratch.			
	O'Reilly, 1 st edition, 2015. Recommended Reading: 2. Wes McKinney. <i>Python for Data Analysis</i> .			
	O'Reilley, 1st edition, 2012.			
	3. Luciano Ramalho. <i>Fluent Python</i> .			
	O'Reilley 1 st edition, 2015.			
Planned learning activities	lectures, group work, lab work, role playing, project-based			
and teaching methods	learning, homework			
Assessment methods and	Class participation: 10%			
criteria	Assignments: 50%			
	In-class examination: 40%			
Language of Instruction	English			
Work Placement(s)	Not applicable			
()	**			