

THE CYPRUS INTERNATIONAL INSTITUTE OF MANAGEMENT <u>COURSE UNIT DESCRIPTION</u>

Course Unit Title	Applied	Artificial Intelligence (AI) and Deep Learning (DL)		
Course Unit Code	AT500			
Type of Unit	Core			
Level of Course Unit	Second cycle			
Year of Study	Modular			
Semester	On demand			
Number of ECTS Credits	6 ECTS			
Course Unit Objectives	The objective of this course is to introduce students to artificial intelligence with			
Course Onit Objectives	intelligent agents, knowledge representation, reasoning, machine learning, and deep			
	learning. It will then present methods for language analysis and vision/robotics.			
	The first objective will be to learn the basic ideas in Artificial Intelligence behind			
	the design of intelligent agents and knowledge representation with			
		robabilistic reasoning for real-world data/problems. The latter	include	
	search, games, machine learning, and constraint satisfaction.			
	The next objective will be to review basic ideas of design and analysis of efficient			
	algorithms, including searching, graph algorithms, and dynamic programming. It			
	will then emphasize on supervised machine learning techniques for regression			
	and classification. The latter using the scikit-learn library.			
	Then, it is to learn about datasets, architecture, optimization, training, and			
	performance validation used for neural networks and deep learning (DL). It will			
	cover implementation with the TensorFlow and Keras deep learning framew Eventually , the course will cover systems to analyze, understand, and produ			
			produce	
	language and sequences. Use machine and deep learning methods for language			
	modeling	g. Examine applications such as information extraction, maching	ne	
	translation, and text generation.			
		topic will be on computer vision and robotics. It will cover ide		
		ng, filtering, segmentation, object recognition, and detection w		
		tworks. Also, on vision algorithms and learning as the basis of	f robotic	
		n, interaction, and planning.		
Learning Outcomes	On completion of this course students are expected to know:			
	CILO 1 AI in terms of agents and knowledge representation/reasoning for real			
		world data/problems.		
	CILO 2	Algorithms such as searching, graph, and dynamic programm		
		Supervised learning for regression/classification. Implementa	ation with	
	GTL O. A	the scikit-learn library.		
	CILO 3	Architectures and training for deep learning. Implementation	1 n	
	GTL O. L	TensorFlow/Keras framework.		
	CILO 4	Natural language processing for text understanding. Applicat	tions for	
	CILO 5	machine translation and text generation with DL.	:4 DI	
	CILO 5	Computer vision. Image filtering, processing, and detection v	with DL.	
News of Least and (a)	Ctation II	Integration with robotics.		
Name of Lecturer(s)	Stathis Hadjidemetriou			
Mode of delivery	Face to Face			
Prerequisites or corequisites		thon Programming		
Course Content		Data structures and algorithms		
Course Content	Introduction to AI with agents/knowledge representation and CILO 1			
	reasoning for real world problems.Algorithms and machine learning. Overview of searching, graph, andCILO 2			
	dynamic programming. Supervised learning for			
	regression/classification.CILO 3			
	implementation with TensorFlow/Keras.			
	Natural language and sequence processing. Analysis and understanding of text. Applications for information extraction,CILO 4			
	machine translation, and text generation with DL.			
		r vision with image filtering, processing, detection with DL.	CILO 5	
		computer vision with robotics.		
	megrate			

Recommended or required	Textbooks:
reading	Peter Norvig, Stuart J. Russell, Artificial Intelligence: A modern approach (4th
	<u>edition), 2020</u>
	Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 2nd Edition by Aurélien Géron (Author)
	<u>Optional textbook:</u> <u>Deep Learning (Adaptive Computation and Machine Learning series) Illustrated</u> <u>Edition by Ian Goodfellow (Author), Yoshua Bengio (Author), Aaron</u> <u>Courville (Author)</u>
	Deep Learning with Python 1st Edition by François Chollet (Author)
	Articles & Journals:
	<u>Online sources:</u> <u>TensorFlow</u> Keras
	Other online courses
	MIT Open courseware – Artificial intelligence
	MIT Introduction to Deep Learning
	NYU Deep Learning SP21
Diamand loaming activities	Stanford Engineering- Machine Learning Lectures; in-class discussion and debates; in-class exercises; problem sets; team
Planned learning activities and teaching methods	work; video case studies, team presentations, interactive online learning via Moodle
	(quizzes, assignments, forums)
Assessment methods and	Participation: 10%
criteria	Midterm exam: 30%
	Final Exam: 60%
Language of Instruction	English
Work Placement(s)	Not applicable